复合判断重点复习资料(普通逻辑)

复合判断重点复习资料(普通逻辑)

《普通逻辑》

主讲老师:蒙蒙老师

第四章 复合判断

普通逻辑历年真题出题情况

本章核心考点提炼

客观题【单选、双选、填空】:

  1. 联言判断的真假
  2. 选言判断的种类(相容 VS 不相容)
  3. 假言判断的种类(充分 VS 必要 VS 充分必要)
  4. 简单判断的负判断
  5. 复合判断的负判断
  6. 模态判断的种类
  7. 模态判断之间的真假关系

课程地图

第一节 联言判断

01 什么是联言判断 ★★ 单选、填空

1.什么是联言判断

联言判断是断定几种事物情况同时存在的判断。

例:4.1.1

(1) 唐代的王维不但是大诗人,而且是著名的书画家。

(2) 君子博学而日三省乎己。

(3) 春风一夜吹乡梦,又逐春风到洛城。

(4) 刘郎已恨蓬山远,更隔蓬山一万重。

2.联言判断的命题形式

p 并且 q

 其中,p、q 称作联言支,“并且”是一个联言判断联结词。联言判断的联结词通常用符号“∧”来表示,联言判断的命题形式有时也写作:p∧q (读作:p 合取 q。)

3.联言判断的代表词

(1)“而且”

(2)“而”

(3)“不但……而且……”

(4)“既……又……”

(5)“不仅……还……”

(6)

“虽然……但是……”

 在自然语言中,还有大量的联言判断不使用联结词。

例 4.1.2

(1) 天行健,君子当自强不息;地势坤,君子以厚德载物。

(2) 锦瑟无端五十弦,一弦一柱思华年。庄生晓梦迷蝴蝶,望帝春心托杜鹃。沧海月明珠有泪,蓝田日暖玉生烟。此情可待成追忆,只是当时已惘然。

 联言支的主项或者谓项如果相同,则联言判断可以省略一个主项或者谓项

例 4.1.3

(1) 李广是西汉名将,曾任卫将军。

(2) 杜甫、李白都是影响久远的伟大诗人。

真题演练

【双选题】两判断:(1)“雨果和巴尔扎克都是法国著名的作家”(2)“光既有粒子性又有波动性”,它们( )。

  1. 都是简单判断

(1)是简单判断,(2)是复合判断

(1)是复合判断,(2)是简单判断

  1. 都是复合判断.
  2. 都是联言判断.

【答案】DE

【解析】(1)“雨果和巴尔扎克都是法国著名的作家”等于“雨果是法国著名的作家且巴尔扎克是法国著名的作家”;(2)“光既有粒子性又有波动性”等于“光有粒子性且光有波动性”。所以,两判断都是联言判断,都是复合判断。

【考点】什么是联言判断

【填空题】自身中包含有其他判断的判断叫做____________。

【答案】复合判断

【考点】什么是联言判断

02 联言判断真假的确定 ★★★ 单选、填空、图表【客观 1】

 联言判断既然是断定几种事物情况同。即只有当联言支都真时,联言判断才为真;当联言支至少有一个为假时,联言判断为假。

Eg:“这套家具是明代的,并且是檀木的”

这套家具是明代的

这套家具是檀木的

这套家具是明代的并且是檀木的

 一个联言判断的真假情况可以用下表来表示:

p∧q”的真值特征是:只有在 p、q 都真时,“

p∧q”才真,其余情况下“

p∧q”均假。

真题演练

【单选题】

p 并且 q”真,当且仅当()【2015 年 4 月】

  1. p 真 q 真
  2. p 真 q 假
  3. p 假 q 真
  4. p 假 q 假

【答案】A

【解析】当且仅当 p 真 q 真时,“p 并且 q”为真,故选 A。

【考点】联言判断真假的确定

【单选题】一个判断式“

p∧q”为真,当且仅当( )。

  1. p 真且 q 真
  2. p 真且 q 假
  3. p 假且 q 真
  4. p 假且 q 假

【答案】A

【解析】p∧q,即 p 并且 q。当且仅当 p 真且 q 真,“p∧q”为真。

【考点】联言判断真假的确定

【双选题】下列判断中属于联言判断的是( )。

  1. 国有资本投资项目允许非国有资本参股
  2. 国家保护各种所有制经济产权
  3. 公有制经济财产权和非公有制经济财产权都不可侵犯
  4. 现代产权制度归属清晰、权责明确、保护严格、流转顺畅
  5. 混合所有制经济是基本经济制度的重要实现形式

【答案】CD

【解析】联言判断是断定几种事物情况同时存在的判断。CD 是联言判断,ABE 属于简单判断。故选择CD 项。

【考点】联言判断真假的确定

第二节 选言判断

03 什么是选言判断 ★★

 选言判断是断定几种事物情况至少有一种存在的判断

例 4.2.1

(1)或者时间有始,或者时间无终。

(2)要么一举成名,要么一败涂地。

(3)一部好的作品,或者思想深刻,或者艺术精湛。

(4)要么“东邪”击败“西毒”,要么“西毒”战胜“东邪”。

 选言判断的支判断称为选言支。两个选言支的主项或者谓项如果相同,在自然语言中,可以省略其中的一个。

例 4.2.2

(1)巴西队或者德国队将最终夺冠。

(2)李煜要么做个好君主,要么做一个好词人。

 选言支所断定的几种事物情况,有时是能够同时成立的,有时是不能同时成立的。

例 4.2.3

(1)或者李隆基深爱杨玉环,或者杨玉环深爱李隆基。

(2)第一个登上“木卫二”的要么是美国人,要么不是美国人。

04

选言判断的种类 ★★★ 双选、填空【客观 2】

 根据选言支是否相容,可以将选言判断分为:相容选言判断不相容选言判断

(一)相容选言判断

1.什么是相容选言判断

 因为相容选言判断的选言支相容,所以相容选言判断就是断定几个选言支中至少有一个为真并且可以同时为真的选言判断。

2.相容选言判断的命题形式

p 或者 q

 其中,p、q 是选言支,“或者”是一个相容选言判断联结词。相容选言判断的联结词通常用符号“V”来表示,相容选言判断的命题形式有时也写作:

pVq (读作:p 析取 q)

3.相容选言判断的代名词

(1)“或者”、或者……或者……

(2)“或许……或许……”

(3)“可能……可能……”

例 4.2.4

(1) 在这盘象棋比赛中,或许慕容芬不能战胜上官诚,或许上官诚不能战胜慕容芬。

(2) 双向选择,可能是你选择对方,也可能是对方选择你。

  1. 相容选言判断真假的确定

 只要选言支有一个或者一个以上为真,相容选言判断就为真。只有当选言支都假时,相容选言判断才为假。

Eg: “龙虎山中或者有珍禽,或者有异兽”。

龙虎山中有珍禽

龙虎山中有异兽

龙虎山中或者有珍禽,或者有异兽

 一般地,一个相容选言判断的真假情况可以用如下的真值表来表示:

pVq”的真值特征是:只有在 p、q 都假时,“pVq”才假,其余情况下“pVq”均真。

(二)不相容选言判断

1.什么是不相容选言判断

 因为不相容选言判断的选言支不相容,所以不相容选言判断就是断定几个选言支中恰好有一个为 真的选言判断

2.不相容选言判断的命题形式

要么 p,要么 q

 其中,p、q 是选言支,“要么……要么……”是一个不相容选言判断联结词。不相容选言判断的联结词通常用符号“ܸ

ሶ ”来表示,不相容选言判断的命题形式有时也写作:pࢂሶ q (读作:p 不相容析取 q)

3.不相容选言判断的代名词

(1)“……二者择其一”

(2)“二者只居其一”

(3)“二者不可得兼”

(4) ……

例 4.2.5

(1) 这粒种子要么是葵花子,要么是送子。

(2) 或者洁身自好,或者合流同污,二者必居其一。

4.不相容选言判断真假的确定

只有当选言支至少有一个并且至多有一个为真,不相容选言判断才为真;否则,不相容选言判断为假。

Eg: “要么物质第一,要么意识第一”

物质第一

意识第一

要么物质第一,要么意识第一

 一般地,一个不相容选言判断的真假情况可以用如下的真值表来表示:pࢂሶ q”的真值特征是:只有在 p、q 的值不同时,“pࢂሶ q”才真,其余情况下“pࢂሶ q”均假。

真题演练

【双选题】属于选言判断的是()。【2017 年 04 月】

A.人为财死,鸟为食亡

B.没有不喜欢辩论的律师

C.或为玉碎,或为瓦全

D.要么改革开放,要么闭关锁国

E.不入虎穴,焉得虎子美好明天内部资料

【答案】CD

【解析】选言判断的关键词是“或者…或者…”、“要么…要么…”, “或者…或者…”是相容选言判断,“要么…要么…”是不相容选言判断,故选 CD。

【考点】选言判断的种类

【单选题】“要么 p,要么 q”的逻辑含义是( )。

  1. p 和 q 必有一真,并可同真
  2. p 和 q 至多一真,也可能同假
  3. p 真或 q 真,但不可能同时为真
  4. p 和 q 可能都真

【答案】C

【解析】“要么 p,要么 q”是不相容选言命题,则 p 真或 q 真,但不可能同时为真。故选 C。

【考点】选言判断的种类

本节小结

第三节 假言判断

05 什么是假言判断 ★★ 单选、多选

 假言判断是断定某一事物情况的存在(或不存在)是另一事物情况存在(或不存在)的条件的判断。假言判断也称条件判断。

例 4.3.1

(1)如果布谷鸟叫了,那么夏天就到了。

(2)只有尊重别人,能赢得别人的尊重。

(3)只要思考,会有所发现;也只有思考,能有所发现。

(4)若非一番寒彻骨,哪得梅花扑鼻香?

(5)逢人不说人间事,便是人间无事人。

 假言判断由两个支判断构成,前一个支判断称为假言判断的前件,后一个支判断称为假言判断的后件。

 两事物情况之间存在各种各样的条件关系,逻辑学主要研究充分条件、必要条件和充分必要条件 这三种条件关系。

1.充分条件

 对于两个事物情况 p 和 q,如果有 p,就必定有 q,则称 p 是 q 的充分条件。

 Eg:如果天下雨,那么地湿。

2.必要条件

 对于两个事物情况 p 和 q,如果没有 p,就必定没有 q,则称 p 是 q 的必要条件。

 Eg:只有勤奋,才能够成功。

3.充分必要条件

 对于两个事物情况 p 和 q,如果有 p,就必定有 q;如果没有 p,就必定没有 q,则称 p 是 q 的充分必要条件。

 Eg:当且仅当你付了足够的钱,你才能买到商店里的东西。

06 假言判断的种类 ★★★ 单选、双选、图表【客观 3】

(一)充分条件假言判断

  1. 充分条件假言判断

 充分条件假言判断指的是断定事物情况之间具有充分条件关系的假言判断。

例 4.3.2

(1)如果物体相互摩擦,那么物体就会生热。

(2)只要你不断地努力,一定有可能成功。

(3)若能转物,同如来。

  1. 充分条件假言判断的命题形式如果 p,那么 q

 充分条件假言判断的联结词通常用符号“→”来表示,充分条件假言判断的命题形式有时也写作:p→q(读作:p 蕴涵 q。)

3.充分条件假言判断的代表词

“如果……则……”

“只要……就……”

“一旦……就……”

“若……则……”

4.充分条件假言判断真假的确定

一个充分条件假言判断为真当且仅当如果其前件为真,则后件一定为真。即只有当前件真且后件假时,充分条件假言判断才为假。其他情况下,充分条件假言判断均为真。Eg: “如果你考试通过了,那么我给你 100 万”。

 一个充分条件假言判断的真假情况的真值表

p→q”的真值特征是:只有在 p 真 q 假时,“p→q”才假,其余情况下“p→q”均真。

真题演练

【单选题】“如果 p,那么 q”为假的情况是()。

  1. p 真且 q 真
  2. p 真且 q 假
  3. p 假且 q 真
  4. p 和 q 都假

【答案】B

【解析】充分条件假言判断,当前件真后件假时,该充分条件假言判断为假。因此,当 p 真且 q 假时,“如果 p,那么 q”为假。

【考点】假言判断的种类

(二)必要条件假言判断

1.什么是必要条件假言判断

必要条件假言判断指的是断定事物情况之间具有必要条件关系的假言判断。

例 4.3.3

(1)只有亲自登上黄山,才能真正感受到黄山的秀美。

(2)除非你理解世上最令人发笑的趣事,你才能解决最为棘手的难题。

  1. 必要条件假言判断的命题形式

只有 p,才 q

 必要条件假言判断的联结词通常用符号“←”来表示,必要条件假言判断的命题形式有时也写作:p←q。(读作:p 逆蕴涵 q。)

3.必要条件假言判断的代表词

(1)“只有…p…才…q…”

(2)“若非…p…哪得…q…”

(3)“没有…p…没有…q…”

(4)“除非…p…不…q…”

充分条件假言判断和必要条件假言判断可以相互转化:如果 p 是 q 的充分条件,那么 q 是 p 的必要条件; 如果 q 是 p 的必要条件,那么 p 是 q 的充分条件。

Eg:

p→q

q←p

考上→100 万

p→q

q ← p

例子

考上→100 万

100 万←考上

矛盾例子

考上并且非 100 万

非 100 万并且考上

矛盾

P 并且非 q

非 q 并且 p

4.必要条件假言判断真假的确定

一个必要条件假言判断为真当且仅当只有其前件为真,后件才为真。即只有当前件假但后件为真时,必要条件假言判断才为假。其他情况下,必要条件假言判断均为真。

Eg: “只有年满 18 周岁,才能拥有选举权”。

 一个必要条件假言判断的真假情况的真值表:

p←q”的真值特征是:只有在 p 假 q 真时,“p←q”才假, 其余情况下“p←q”均真。

(三)充分必要条件假言判断

1.什么是充分必要条件假言判断

 充分必要条件假言判断指的是断定事物情况之间具有充分必要条件关系的假言判断。

例 4.3.4

(1)一个孩子成为大人当且仅当他意识到自己有犯错误的权利。

(2)如果你谦虚,那么将获得尊重;并且只有谦虚,你才能获得尊重。

  1. 充分必要条件假言判断的命题形式p 当且仅当 q

 充分必要条件假言判断的命题形式有时也写作: pq。(读作:p 等值 q。)

3.充分必要条件假言判断真假的确定

一个充分必要条件假言判断为真当且仅当其前件、后件同为真或者同为假。即当前、后件真假相同时,充分件假言判断为真。当前、后件真假不同时,充分必要条件假言判断为假。

Eg: “宙斯是阿波罗的父亲,当且仅当阿波罗是宙斯的儿子”。

宙斯是阿波罗的父亲

阿波罗是宙斯的儿子

宙斯是阿波罗的父亲,

当且仅当阿波罗是宙斯的儿子

 一个充分必要条件假言判断的真假情况的真值表:

 p↔q”的真值特征是:只有在 p、q 值相等时,“pq”才真,其余情况下“p↔q”均假。

真题演练

【单选题】下列判断中为充分条件假言判断的是( )。

  1. 改革胆子要大、步子要稳。
  2. 要实现中华民族伟大复兴的中国梦,就要在新的历史起点上全面深化改革。
  3. 改革开放是决定当代中国命运的关键抉择。
  4. 只有进一步解放思想,才能全面深化改革

【答案】B

【解析】B 判断是充分条件假言判断,A 属于联言判断,C 是简单判断,D 是必要条件假言判断。

【考点】假言判断的种类

【单选题】除非具备完善的司法体制,否则就不会有真正的安全保障。由此可见()。

  1. 现在不具备完善的司法体制
  2. 现在没有真正的安全保障
  3. 只要具备完善的司法体制,就可以建立真正的安全保障美好明天内部资料
  4. 只有具备完善的司法体制,才可以建立真正的安全保障

【答案】D

【解析】题干中的推理式可以写成“完善的司法体制←安全保障”,D 选项的推理式与之相同。

【考点】假言判断的种类

本节小结

第四节 负判断

07 什么是负判断 ★★★ 单选、多选、图表

 负判断是否定某个判断的判断。负判断又叫判断的否定判断,简称判断的否定。前面所讨论的复合判断都有两个或者两个以上的支判断,但是负判断只有一个支判断

例 4.4.1

(1)并非事上皆如所愿。

(2)不是齐国一出兵,魏国就解除了对赵国都城邯郸的围攻。

  1. 负判断的定义

 负判断和简单性质判断中的否定判断不同。负判断否定的是一个判断,而简单性质判断中的否定判断否定的是一个性质。

例 4.4.2

(1)不是所有的胆怯都是勇敢。

(2)所有的胆怯都不是勇敢。

  1. 负判断的命题形式

¬p

读作:非 p。

 负判断既然是对某个判断进行否定,那么一个负判断为真当且仅当其支判断为假。即如果支判断为真,则负判断为假;如果支判断为假,则负判断为真。

3.负判断真假的确定

Eg:如果支判断“芍药灿若牡丹”为真,则负判断“并非芍药灿若牡丹”为假。如果支判断“芍药灿若牡丹”为假,则负判断“并非芍药灿若牡丹”为真。

芍药灿若牡丹

并非芍药灿若牡丹

 一个负判断的真假情况可以用如下的真值表来表示:

¬p”的真值特征是:¬p 与 p 的真值相反。即一个命题的负判断等值于该命题的矛盾命题。

08 简单判断的负判断 ★★★ 单选、双选、填空【客观 4】

 前文所讨论的六种简单性质判断,它们的负判断分别为:

1)并非这个 S 是 P。

2)并非这个 S 不是 P。

3)并非所有 S 都是 P。

4)并非所有 S 都不是 P。

5)并非有的 S 是 P。

6)并非有的 S 不是 P。

形式

并非这个 S 是 P=这个 S 不是 P

例子

“并非北京是大唐都城”=“北京不是大唐都城”。

形式

并非这个 S 不是 P=这个 S 是 P

例子

“并非项羽不是真英雄”=“项羽是真英雄”。

3.

形式

并非所有 S 都是 P=有的 S 不是 P

例子

“并非所有梦想都是彩色的”=“有些梦想不是彩色的”。

4.

形式

并非所有 S 都不是 P=有的 S 是 P

例子

“并非所有的花都不是夜间开放的”=“有的花是夜间开放的”。

形式

并非有的 S 是 P=所有 S 都不是 P

例子

“并非有的借口是理由”=“所有的借口都不是理由”。

6.

形式

并非有的 S 不是 P=所有 S 都是 P

例子

“并非有的诗人不是文学家”=“所有的诗人都是文学家”。

☆总结

并非这个 S 是 P 等值于这个 S 不是 P

并非这个 S 不是 P 等值于这个 S 是 P

并非所有 S 都是 P 等值于有的 S 不是 P

并非所有 S 都不是 P 等值于有的 S 是 P

并非有的 S 是 P 等值于所有 S 都不是 P

并非有的 S 不是 P 等值于所有 S 都是 P

☆方法:

1.把“并非去掉”;

  1. “所有”变“有的”
  2. “不是”变“是”。

真题演练

2017 年 4 月】“并非有的 S 不是 P”等值于( )

A.有的 S 是 P

B.所有 S 是 P

C.所有 S 不是 P

D.所有 P 是 S

【答案】B

【解析】“并非有的 S 不是 P”这是一个负判断,负判断等值于这个判断的矛盾,所以先把并非去掉,

即“有的 S 不是 P”,再求这个判断的矛盾,即“所有 S 都是 P”,故选 B。

【考点】简单判断的负判断

09 复合判断的负判断 ★★★ 单选、双选、填空【客观 5】

 前文所讨论的七种复合判断,它们的负判断分别为:

(1)并非(p 并且 q)。

(2)并非(p 或者 q)。

(3)并非(要么 p,要么 q)。

(4)并非(如果 p,那么 q)。

(5)并非(只有 p,才 q)。

(6)并非(p 当且仅当 q)。

(7)并非(并非 p)。

判断两个命题是否等值可以通过如下步骤来完成(真值表):

(1) 列出 p、q 代入具体内容后所有可能的真假情况。可以列出真值表;

(2) 按照复合判断命题形式的真值表,逐次算出待比较的命题形式在各种情况下的真值。

(3) 判定是否等值。

判定命题形式“并非(p 并且 q)”和“(并非 p)或者(并非 q)”是否等值。

第一步,列出 p、q 代入具体内容后所有可能的真假情况。可以列出如下真值表:

第二步,按照复合判断命题形式的真值表,逐次算出待比较的命题形式在各种情况下的真值:

第三步,判定是否等值。

所以,并非(p 并且 q)等值于“(并非 p)或者(并非 q)”。

1.并非(p 并且 q)等值于“(并非 p)或者(并非 q)”。

Eg:“并非物美价廉”等值于“或者物不美或者价不廉”。

 2.“并非(p 或者 q)”等值于“(并非 p)而且(并非 q)”。可以同样用真值表证明如下:

2.“并非(p 或者 q)”等值于“(并非 p)而且(并非 q)”。

例如,“并非世家或者大族”等值于“既非世家亦非大族”。

 3.“并非(要么 p,要么 q)”等值于“(p 而且 q)或者((并非 p)并且(并非 q))”。可以同样用真值表证明如下:

3.“并非(要么 p,要么 q)”等值于 “(p 而且 q)或者((并非 p)并且(并非 q))”。

例如,“并非(要么对,要么错)”等值于“(既对且错)或者(既不对又不错)”。

 4.并非(如果 p,那么 q)”等值于“p 而且(并非 q)”。可以同样用真值表证明如下:

4.“并非(如果 p,那么 q)”等值于“p 而且(并非 q)”。

例如,“并非(如果登上泰山,则一定能够看到日出)” 等值于“登上泰山但未必能看到日出”。

 5.”并非(只有 p,才 q)”等值于“(并非 p)而且 q”。可以同样用真值表证明如下:

5.“并非(只有 p,才 q)”等值于“(并非 p)而且 q”。

例如,“并非(只有党员才能当干部)”等值于“不是党员也能当干部”。

 6.“并非(p 当且仅当 q)”等值于“(p 并且(并非 q)) 或者((并非 p)而且 q)”。可

以同样用真值表证明如下:

6.“并非(p 当且仅当 q)”等值于“(p 并且(并非 q))或者((并非 p)而且 q)”。

例如,“并非(小明成为大学生当且仅当小明通过高考)” 等值于“(小明成为大学生但是他没有通过高考)或者(小明没有成为大学生但是他通过了高考)”。

 7.“并非(并非 p)”等值于“

p”。可以同样用真值表证明如下:

7.“并非(并非 p)”等值于“p”。

例如,“并非(不是所有的人都赞成)”等值于“所有的人都赞成”。

 还可以通过如下的真值表来检验“并非(并非 p)”等值于“p”。

 即,要判定两个逻辑形式 A 和 B 是否等值,只需列出 A↔B 的真值表。如果在真值表中 AB 始终为 真,即在真值表的各行中 AB 均为真,则可断定 A 和 B 等值;否则,则不等值

 通常将在真值表各行中均取真值的公式称为永真式。使用真值表方法我们还可以判断两个逻辑形式 A 和 B 之间是否有蕴涵关系。方法是,列出 A→B 的真值表,如果 A→B 为永真式,则可断定 A 和 B之间有蕴涵关系;否则,没有蕴涵关系。

例 4.4.3

 判断 p∧q 和 p∨

q 之间、p→q 和 p∨q 之间是否有蕴涵关系。

 由上述真值表可以看出,(p∧q)→(p∨q)是永真式,(p→q)→(p∨q)不是永真式,所以,

p∧q 和 p∨q 之间有蕴涵关系,p→q 和 p∨q 之间没有蕴涵关系。

☆总结

并非(p 并且 q)

等值于(并非 p)或(并非 q)并非(p 或者 q)

等值于(并非 p)并且(并非 q)并非(要么 p,要么 q)

等值于p 并且 q 或者(并非 p)并且(并非 q)并非(如果 p,那么 q)

等值于p 并且并非 q并非(只有 p,才 q)

等值于(并非 p)并且 q

题型:

(1) 求等值命题;

(2) 真假话问题(综合题)

(3) 真值表

真题演练

【双选题】与“并非‘只有班长去开会,刘浩才去开会”等值的判断是( )。【2017 年 10 月】

A.虽然班长没去开会,但刘浩去开会了

B.班长和刘浩没有都去开会

C.虽然刘浩没去开会,但班长去开会了

D.只要班长去开会,刘浩就去开会

E.并非“班长不去开会,刘浩就不去开会”

【答案】AE

【解析】“只有班长去开会,刘浩才去开会”这是一个必要条件的假言判断,前面加并非变成负判断,等值于这个判断的矛盾,即“虽然班长没去开会,但刘浩去开会了”所以 A 正确。“虽然班长没去开会,但刘浩去开会了”这个判断的矛盾是“班长没去开会,刘浩没去开会”,再进行否定,二次矛盾等值于原命题,再它前面加“并非”,即并非“班长不去开会,刘浩就不去开会”,所以 E 正确。故选 AE。

【考点】复合判断的负判断

2014 年 4 月】据真值表,以下命题形式中与 p→q 具有等值关系的是( )。

A.p∧┐q

B.┐p∧q

C.p∨┐q

D.┐p∨q

【答案】D

【解析】二次矛盾,p→q 等值于┓p∨q。

【考点】复合判断的负判断

【单选题】“并非有国家不解决交通能源问题但能使经济高度发展”是( )。

  1. 否定判断
  2. 负判断
  3. 联言命题
  4. 全称判断

【答案】B

【解析】负判断是否定某个判断的判断。“并非有国家不解决交通能源问题但能使经济高度发展”等值于“所有不解决交通能源问题的国家不能使经济高度发展”,这是一个负判断。故选择 B 项。

【考点】复合判断的负判断

【单选题】“并非所有新闻工作者都是有良知的”,由此必然可以推出()。

  1. 有的新闻工作者没有良知
  2. 有良知的都不是新闻工作者
  3. 新闻工作者都没有良知
  4. 有的新闻工作者有良知

【答案】A

【解析】“并非所有新闻工作者都是有良知的”等值于“有些新闻工作者没有良知”。

【考点】复合判断的负判断

【综合题】在“学习雷锋”活动中,有些战士做了好事不留名。王建的父亲生病用去很多医药费,生活很困难,一天,他收到以王建名义汇来的一笔钱,王建父亲写信给王建说钱收到了,王建感到莫名其妙。后来他的战友有如下反映:刘新说:“这钱或者是李小冰寄的,或者是王晓路寄的。”叶青说:“这钱是陈波寄的。”陈波说:“这钱既不是李小冰寄的,也不是王晓路寄的。”周行说:“这钱如果不是江敏寄的,那么就一定是陈波寄的。”李凌说:“这钱肯定不是谢均寄的。”事后查明,只有一个人反映的情况符合事实。试问这笔钱是谁寄的?

【答案】

1.刘新和陈波所言构成矛盾,则二者必有一真。那么其他人所言均为假。

2.李凌所言为假,可确定钱是谢均寄的;

3.根据叶青所言,钱不是陈波寄的;

4.周行所言的充分条件假言命题为假,则钱不是江敏寄的,也不是陈波寄的;

5.所以,可确定钱是谢均寄的。

【考点】复合判断的负判断

第五节 模态判断

10 什么是模态判断 ★★ 单选

模态词指的是描摹事物状态的词。

模态判断指的是包含模态词的判断。美好明天内部资料

 模态判断中的模态词有作用于词项之上的,有作用于语句之上的。

例 4.5.2

(3)可能这座山里有野兔。

(4)这座山里可能有野兔。

(5)必然有人在摸彩中获奖。

(6)有人在摸彩中必然获奖。

11 模态判断的种类 ★★★ 单选、多选、填空【客观 6】

根据对事情情况的肯定或者否定所作的必然性或者或然性的断定,可以将狭义模态判断分为

(1) 必然肯定判断

(2) 必然否定判断

(3) 或然肯定判断

(4) 或然否定判断

1.必然肯定判断

必然肯定判断是对事情情况的肯定作出必然性的断定的判断。

例 4.5.3

(1)必然是适者生存,不适者消亡。

(2)人要经历生离死别,这是必然的。

 必然肯定判断的命题形式:

必然 p

写作: □ p。

读作:必然 p。

2.必然否定判断

必然否定判断是对事情情况的否定作出必然性的断定的判断。

例 4.5.4

(1)必然不是人人都主动愿意修行。

(2)刘邦依靠德行在楚汉相争中获胜,必然不是这样的。

 必然否定判断的命题形式:

必然﹁p

写作: □ ﹁p。

读作:必然并非 p。

3.或然肯定判断

或然肯定判断是对事情情况的肯定作出或然性的断定的判断。

例 4.5.5

(1)可能麻烦都是自找的。

(2)通过不懈的努力获得成功,这是可能的

 或然肯定判断的命题形式:

可能 p

写作: ◇p。

读作:可能 p。

4.或然否定判断

或然否定判断是对事情情况的否定作出或然性的断定的判断。

例 4.5.6

(1)可能不是通过别人救赎自己。

(2)快乐是永恒的,可能并非如此

 或然否定判断的命题形式:

可能﹁p

写作: ◇﹁p。

读作:可能并非 p。

真题演练

【单选题】 “明天可能不下雨” 是( )。

  1. 必然肯定模态判断
  2. 必然否定模态判断
  3. 或然肯定模态判断
  4. 或然否定模态判断

【答案】D

【解析】明天可能不下雨”是或然否定模态。

【考点】模态判断的种类

12 模态判断之间的真假关系 ★★★ 单选【客观 7】

 同素材的“必然 p”、“必然并非 p”、“可能 p”、“可能并非 p”之间也具有一种对当关系。可以用如下的逻辑方阵图来表示:

1.□p 与◇﹁p、□﹁p 与◇p 之间存在矛盾关系

它们之间具有如下的真假关系:既不能同真,也不能同假。即如果一个判断是真的,则另一个判断就是假的;如果一个判断是假的,则另一个判断就是真的。

变矛盾时关注:

(1) 模态词:“可能”变“必然” ; “必然”变“可能”。

(2) 判断词:“是”变“非”;“非”变“是”。

  1. □p 与□﹁p 之间存在反对关系

它们之间具有如下的真假关系:不能同真,可以同假。即如果一个判断是真的,则另一个判断就是假的;如果一个判断是假的,则另一个判断真假不定。

  1. ◇p 与◇﹁p 之间存在下反对关系

它们之间具有如下的真假关系:不能同假,可以同真。即如果一个判断是假的,则另一个判断就是真的;如果一个判断是真的,则另一个判断真假不定。

  1. □p 与◇p、□﹁p 与◇﹁p 之间存在差等关系

它们之间具有如下的真假关系:如果必然判断是真的,则或然判断也是真的;如果必然判断是假的,则或然判断真假不定;如果或然判断是真的,则必然判断真假不定;如果或然判断是假的,则必然判 断也是假的

☆总结

关系

真假情况

□p 与◇﹁p、□﹁p 与◇p 之间存在矛盾关系

一真一假

□p 与□﹁p 之间存在反对关系

至少一假

◇p 与◇﹁p 之间存在下反对关系

至少一真

□p 与◇p、□﹁p 与◇﹁p 之间存在差等关系

必真或真

或假必假

二次矛盾:

由此可知:

1) ﹁□p 等值于◇﹁p;

2) ﹁□﹁p 等值于◇p;

3) ﹁◇p 等值于□﹁p;

4) ﹁◇﹁p 等值于□p。

等值命题如何变:

(1) 命题前有否定词的,去掉否定词,再变矛盾。

(2) 命题前无否定词的,先变矛盾,再加上否定词。

Eg:

(1) 并非可能 p 等值于 必然非 p

(2) 必然 p等值于

并非可能非 p

例 4.5.7

假设“必然黄金贵于白银”真,求同素材的其他判断的真假。

(【解析】“必然黄金贵于白银”是一个必然肯定判断。)

(1) 根据矛盾关系,如果□p 是真的,则◇﹁p 是假的,即“可能并非黄金贵于白银”假。

(2) 根据反对关系,如果□p 是真的,则□﹁p 是假的,即“必然不是黄金贵于白银”假。

(3) 根据差等关系,如果□p 是真的,则◇p 是真的,即“可能黄金贵于白银”真。

真题演练

【单选题】“必然 p”与“不必然非 p”之间的关系应该是( )。【2017 年 4 月】

  1. 反对关系
  1. 下反对关系
  1. 矛盾关系
  1. 差等关系

【答案】D

【解析】“不必然非 p”是个负判断,等值于“可能 p”,所以“必然 p”和“可能 p”之间是差等关系。

【考点】模态判断之间的真假关系

【双选题】已知“不可能 p”为真,则为假的是( )。【2015 年 4 月】

  1. 可能 p
  2. 可能非 p
  3. 不必然 p
  4. 必然 p
  5. 必然非 p

【答案】AD

【解析】不可能 p”为真,则其矛盾“可能 p”为假,A 当选;“不可能 p”等值于“必然非 p”,与“必然 p”为反对关系,“不可能 p”为真,则“必然 p”为假,D 当选。

【考点】模态判断之间的真假关系

【双选题】已知“◇p”假,则()。

  1. ◇┐p 真
  2. □┐p 假
  3. □p 假
  4. ◇┐p 假
  5. □p 真

【答案】AC

【解析】 “◇p”和“◇┐p ”之间存在下反对关系,不能同假,可以同真,因此,“◇p”假,则“◇┐p”为真。“◇p”和“□p”之间存在差等关系,若“◇p”假,则□p 假。

【考点】模态判断之间的真假关系

本章小结

本章核心考点提炼

客观题【单选、双选、填空】:美好明天内部资料

  1. 联言判断的真假
  2. 选言判断的种类(相容 VS 不相容)
  3. 假言判断的种类(充分 VS 必要 VS 充分必要)
  4. 简单判断的负判断
  5. 复合判断的负判断
  6. 模态判断的种类
  7. 模态判断之间的真假关系
中国自考网:本站所有历年真题和视频资料,持续更新到最新的,如发现不是最新,联系客服即可。
中国自考网:建议开通SVIP超级会员更划算,全站所有资源永久免费下载(正版自考网课除外)
1. 本站所有网课课程资料来源于用户上传和网络收集,如有侵权请邮件联系站长!
2. 分享目的仅供大家学习和交流,助力考生上岸!
3. 如果你想分享自己的自考经验或案例,可在后台编辑,经审核后发布在“中国自考网”,有下载币奖励哦!
4. 本站提供的课程资源,可能含有水印,介意者请勿下载!
5. 如有链接无法下载、失效或广告,请联系管理员处理(在线客服)!
6. 本站资源售价只是赞助,收取费用仅维持本站的日常运营所需!
7. 星光不问赶路人,岁月不负有心人,不忘初心,方得始终!
中国自考网 » 复合判断重点复习资料(普通逻辑)

中国自考网-百万考生与你同行

会员介绍 在线客服